/* global a2c */ 'use strict'; var regPathInstructions = /([MmLlHhVvCcSsQqTtAaZz])\s*/, regPathData = /[-+]?(?:\d*\.\d+|\d+\.?)([eE][-+]?\d+)?/g, regNumericValues = /[-+]?(\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/, transform2js = require('./_transforms').transform2js, transformsMultiply = require('./_transforms').transformsMultiply, transformArc = require('./_transforms').transformArc, collections = require('./_collections.js'), referencesProps = collections.referencesProps, defaultStrokeWidth = collections.attrsGroupsDefaults.presentation['stroke-width'], cleanupOutData = require('../lib/svgo/tools').cleanupOutData, removeLeadingZero = require('../lib/svgo/tools').removeLeadingZero, prevCtrlPoint; /** * Convert path string to JS representation. * * @param {String} pathString input string * @param {Object} params plugin params * @return {Array} output array */ exports.path2js = function(path) { if (path.pathJS) return path.pathJS; var paramsLength = { // Number of parameters of every path command H: 1, V: 1, M: 2, L: 2, T: 2, Q: 4, S: 4, C: 6, A: 7, h: 1, v: 1, m: 2, l: 2, t: 2, q: 4, s: 4, c: 6, a: 7 }, pathData = [], // JS representation of the path data instruction, // current instruction context startMoveto = false; // splitting path string into array like ['M', '10 50', 'L', '20 30'] path.attr('d').value.split(regPathInstructions).forEach(function(data) { if (!data) return; if (!startMoveto) { if (data == 'M' || data == 'm') { startMoveto = true; } else return; } // instruction item if (regPathInstructions.test(data)) { instruction = data; // z - instruction w/o data if (instruction == 'Z' || instruction == 'z') { pathData.push({ instruction: 'z' }); } // data item } else { data = data.match(regPathData); if (!data) return; data = data.map(Number); // Subsequent moveto pairs of coordinates are threated as implicit lineto commands // http://www.w3.org/TR/SVG/paths.html#PathDataMovetoCommands if (instruction == 'M' || instruction == 'm') { pathData.push({ instruction: pathData.length == 0 ? 'M' : instruction, data: data.splice(0, 2) }); instruction = instruction == 'M' ? 'L' : 'l'; } for (var pair = paramsLength[instruction]; data.length;) { pathData.push({ instruction: instruction, data: data.splice(0, pair) }); } } }); // First moveto is actually absolute. Subsequent coordinates were separated above. if (pathData.length && pathData[0].instruction == 'm') { pathData[0].instruction = 'M'; } path.pathJS = pathData; return pathData; }; /** * Convert relative Path data to absolute. * * @param {Array} data input data * @return {Array} output data */ var relative2absolute = exports.relative2absolute = function(data) { var currentPoint = [0, 0], subpathPoint = [0, 0], i; data = data.map(function(item) { var instruction = item.instruction, itemData = item.data && item.data.slice(); if (instruction == 'M') { set(currentPoint, itemData); set(subpathPoint, itemData); } else if ('mlcsqt'.indexOf(instruction) > -1) { for (i = 0; i < itemData.length; i++) { itemData[i] += currentPoint[i % 2]; } set(currentPoint, itemData); if (instruction == 'm') { set(subpathPoint, itemData); } } else if (instruction == 'a') { itemData[5] += currentPoint[0]; itemData[6] += currentPoint[1]; set(currentPoint, itemData); } else if (instruction == 'h') { itemData[0] += currentPoint[0]; currentPoint[0] = itemData[0]; } else if (instruction == 'v') { itemData[0] += currentPoint[1]; currentPoint[1] = itemData[0]; } else if ('MZLCSQTA'.indexOf(instruction) > -1) { set(currentPoint, itemData); } else if (instruction == 'H') { currentPoint[0] = itemData[0]; } else if (instruction == 'V') { currentPoint[1] = itemData[0]; } else if (instruction == 'z') { set(currentPoint, subpathPoint); } return instruction == 'z' ? { instruction: 'z' } : { instruction: instruction.toUpperCase(), data: itemData }; }); return data; }; /** * Apply transformation(s) to the Path data. * * @param {Object} elem current element * @param {Array} path input path data * @param {Object} params whether to apply transforms to stroked lines and transform precision (used for stroke width) * @return {Array} output path data */ exports.applyTransforms = function(elem, path, params) { // if there are no 'stroke' attr and references to other objects such as // gradiends or clip-path which are also subjects to transform. if (!elem.hasAttr('transform') || !elem.attr('transform').value || elem.someAttr(function(attr) { return ~referencesProps.indexOf(attr.name) && ~attr.value.indexOf('url('); })) return path; var matrix = transformsMultiply(transform2js(elem.attr('transform').value)), stroke = elem.computedAttr('stroke'), id = elem.computedAttr('id'), transformPrecision = params.transformPrecision, newPoint, scale; if (stroke && stroke != 'none') { if (!params.applyTransformsStroked || (matrix.data[0] != matrix.data[3] || matrix.data[1] != -matrix.data[2]) && (matrix.data[0] != -matrix.data[3] || matrix.data[1] != matrix.data[2])) return path; // "stroke-width" should be inside the part with ID, otherwise it can be overrided in if (id) { var idElem = elem, hasStrokeWidth = false; do { if (idElem.hasAttr('stroke-width')) hasStrokeWidth = true; } while (!idElem.hasAttr('id', id) && !hasStrokeWidth && (idElem = idElem.parentNode)); if (!hasStrokeWidth) return path; } scale = +Math.sqrt(matrix.data[0] * matrix.data[0] + matrix.data[1] * matrix.data[1]).toFixed(transformPrecision); if (scale !== 1) { var strokeWidth = elem.computedAttr('stroke-width') || defaultStrokeWidth; if (elem.hasAttr('stroke-width')) { elem.attrs['stroke-width'].value = elem.attrs['stroke-width'].value.trim() .replace(regNumericValues, function(num) { return removeLeadingZero(num * scale) }); } else { elem.addAttr({ name: 'stroke-width', prefix: '', local: 'stroke-width', value: strokeWidth.replace(regNumericValues, function(num) { return removeLeadingZero(num * scale) }) }); } } } else if (id) { // Stroke and stroke-width can be redefined with return path; } path.forEach(function(pathItem) { if (pathItem.data) { // h -> l if (pathItem.instruction === 'h') { pathItem.instruction = 'l'; pathItem.data[1] = 0; // v -> l } else if (pathItem.instruction === 'v') { pathItem.instruction = 'l'; pathItem.data[1] = pathItem.data[0]; pathItem.data[0] = 0; } // if there is a translate() transform if (pathItem.instruction === 'M' && (matrix.data[4] !== 0 || matrix.data[5] !== 0) ) { // then apply it only to the first absoluted M newPoint = transformPoint(matrix.data, pathItem.data[0], pathItem.data[1]); set(pathItem.data, newPoint); set(pathItem.coords, newPoint); // clear translate() data from transform matrix matrix.data[4] = 0; matrix.data[5] = 0; } else { if (pathItem.instruction == 'a') { transformArc(pathItem.data, matrix.data); // reduce number of digits in rotation angle if (Math.abs(pathItem.data[2]) > 80) { var a = pathItem.data[0], rotation = pathItem.data[2]; pathItem.data[0] = pathItem.data[1]; pathItem.data[1] = a; pathItem.data[2] = rotation + (rotation > 0 ? -90 : 90); } newPoint = transformPoint(matrix.data, pathItem.data[5], pathItem.data[6]); pathItem.data[5] = newPoint[0]; pathItem.data[6] = newPoint[1]; } else { for (var i = 0; i < pathItem.data.length; i += 2) { newPoint = transformPoint(matrix.data, pathItem.data[i], pathItem.data[i + 1]); pathItem.data[i] = newPoint[0]; pathItem.data[i + 1] = newPoint[1]; } } pathItem.coords[0] = pathItem.base[0] + pathItem.data[pathItem.data.length - 2]; pathItem.coords[1] = pathItem.base[1] + pathItem.data[pathItem.data.length - 1]; } } }); // remove transform attr elem.removeAttr('transform'); return path; }; /** * Apply transform 3x3 matrix to x-y point. * * @param {Array} matrix transform 3x3 matrix * @param {Array} point x-y point * @return {Array} point with new coordinates */ function transformPoint(matrix, x, y) { return [ matrix[0] * x + matrix[2] * y + matrix[4], matrix[1] * x + matrix[3] * y + matrix[5] ]; } /** * Compute Cubic Bézie bounding box. * * @see http://processingjs.nihongoresources.com/bezierinfo/ * * @param {Float} xa * @param {Float} ya * @param {Float} xb * @param {Float} yb * @param {Float} xc * @param {Float} yc * @param {Float} xd * @param {Float} yd * * @return {Object} */ exports.computeCubicBoundingBox = function(xa, ya, xb, yb, xc, yc, xd, yd) { var minx = Number.POSITIVE_INFINITY, miny = Number.POSITIVE_INFINITY, maxx = Number.NEGATIVE_INFINITY, maxy = Number.NEGATIVE_INFINITY, ts, t, x, y, i; // X if (xa < minx) { minx = xa; } if (xa > maxx) { maxx = xa; } if (xd < minx) { minx= xd; } if (xd > maxx) { maxx = xd; } ts = computeCubicFirstDerivativeRoots(xa, xb, xc, xd); for (i = 0; i < ts.length; i++) { t = ts[i]; if (t >= 0 && t <= 1) { x = computeCubicBaseValue(t, xa, xb, xc, xd); // y = computeCubicBaseValue(t, ya, yb, yc, yd); if (x < minx) { minx = x; } if (x > maxx) { maxx = x; } } } // Y if (ya < miny) { miny = ya; } if (ya > maxy) { maxy = ya; } if (yd < miny) { miny = yd; } if (yd > maxy) { maxy = yd; } ts = computeCubicFirstDerivativeRoots(ya, yb, yc, yd); for (i = 0; i < ts.length; i++) { t = ts[i]; if (t >= 0 && t <= 1) { // x = computeCubicBaseValue(t, xa, xb, xc, xd); y = computeCubicBaseValue(t, ya, yb, yc, yd); if (y < miny) { miny = y; } if (y > maxy) { maxy = y; } } } return { minx: minx, miny: miny, maxx: maxx, maxy: maxy }; }; // compute the value for the cubic bezier function at time=t function computeCubicBaseValue(t, a, b, c, d) { var mt = 1 - t; return mt * mt * mt * a + 3 * mt * mt * t * b + 3 * mt * t * t * c + t * t * t * d; } // compute the value for the first derivative of the cubic bezier function at time=t function computeCubicFirstDerivativeRoots(a, b, c, d) { var result = [-1, -1], tl = -a + 2 * b - c, tr = -Math.sqrt(-a * (c - d) + b * b - b * (c + d) + c * c), dn = -a + 3 * b - 3 * c + d; if (dn !== 0) { result[0] = (tl + tr) / dn; result[1] = (tl - tr) / dn; } return result; } /** * Compute Quadratic Bézier bounding box. * * @see http://processingjs.nihongoresources.com/bezierinfo/ * * @param {Float} xa * @param {Float} ya * @param {Float} xb * @param {Float} yb * @param {Float} xc * @param {Float} yc * * @return {Object} */ exports.computeQuadraticBoundingBox = function(xa, ya, xb, yb, xc, yc) { var minx = Number.POSITIVE_INFINITY, miny = Number.POSITIVE_INFINITY, maxx = Number.NEGATIVE_INFINITY, maxy = Number.NEGATIVE_INFINITY, t, x, y; // X if (xa < minx) { minx = xa; } if (xa > maxx) { maxx = xa; } if (xc < minx) { minx = xc; } if (xc > maxx) { maxx = xc; } t = computeQuadraticFirstDerivativeRoot(xa, xb, xc); if (t >= 0 && t <= 1) { x = computeQuadraticBaseValue(t, xa, xb, xc); // y = computeQuadraticBaseValue(t, ya, yb, yc); if (x < minx) { minx = x; } if (x > maxx) { maxx = x; } } // Y if (ya < miny) { miny = ya; } if (ya > maxy) { maxy = ya; } if (yc < miny) { miny = yc; } if (yc > maxy) { maxy = yc; } t = computeQuadraticFirstDerivativeRoot(ya, yb, yc); if (t >= 0 && t <=1 ) { // x = computeQuadraticBaseValue(t, xa, xb, xc); y = computeQuadraticBaseValue(t, ya, yb, yc); if (y < miny) { miny = y; } if (y > maxy) { maxy = y ; } } return { minx: minx, miny: miny, maxx: maxx, maxy: maxy }; }; // compute the value for the quadratic bezier function at time=t function computeQuadraticBaseValue(t, a, b, c) { var mt = 1 - t; return mt * mt * a + 2 * mt * t * b + t * t * c; } // compute the value for the first derivative of the quadratic bezier function at time=t function computeQuadraticFirstDerivativeRoot(a, b, c) { var t = -1, denominator = a - 2 * b + c; if (denominator !== 0) { t = (a - b) / denominator; } return t; } /** * Convert path array to string. * * @param {Array} path input path data * @param {Object} params plugin params * @return {String} output path string */ exports.js2path = function(path, data, params) { path.pathJS = data; if (params.collapseRepeated) { data = collapseRepeated(data); } path.attr('d').value = data.reduce(function(pathString, item) { return pathString += item.instruction + (item.data ? cleanupOutData(item.data, params) : ''); }, ''); }; /** * Collapse repeated instructions data * * @param {Array} path input path data * @return {Array} output path data */ function collapseRepeated(data) { var prev, prevIndex; // copy an array and modifieds item to keep original data untouched data = data.reduce(function(newPath, item) { if ( prev && item.data && item.instruction == prev.instruction ) { // concat previous data with current if (item.instruction != 'M') { prev = newPath[prevIndex] = { instruction: prev.instruction, data: prev.data.concat(item.data), coords: item.coords, base: prev.base }; } else { prev.data = item.data; prev.coords = item.coords; } } else { newPath.push(item); prev = item; prevIndex = newPath.length - 1; } return newPath; }, []); return data; } function set(dest, source) { dest[0] = source[source.length - 2]; dest[1] = source[source.length - 1]; return dest; } /** * Checks if two paths have an intersection by checking convex hulls * collision using Gilbert-Johnson-Keerthi distance algorithm * http://entropyinteractive.com/2011/04/gjk-algorithm/ * * @param {Array} path1 JS path representation * @param {Array} path2 JS path representation * @return {Boolean} */ exports.intersects = function(path1, path2) { if (path1.length < 3 || path2.length < 3) return false; // nothing to fill // Collect points of every subpath. var points1 = relative2absolute(path1).reduce(gatherPoints, []), points2 = relative2absolute(path2).reduce(gatherPoints, []); // Axis-aligned bounding box check. if (points1.maxX <= points2.minX || points2.maxX <= points1.minX || points1.maxY <= points2.minY || points2.maxY <= points1.minY || points1.every(function (set1) { return points2.every(function (set2) { return set1[set1.maxX][0] <= set2[set2.minX][0] || set2[set2.maxX][0] <= set1[set1.minX][0] || set1[set1.maxY][1] <= set2[set2.minY][1] || set2[set2.maxY][1] <= set1[set1.minY][1]; }); }) ) return false; // Get a convex hull from points of each subpath. Has the most complexity O(n·log n). var hullNest1 = points1.map(convexHull), hullNest2 = points2.map(convexHull); // Check intersection of every subpath of the first path with every subpath of the second. return hullNest1.some(function(hull1) { if (hull1.length < 3) return false; return hullNest2.some(function(hull2) { if (hull2.length < 3) return false; var simplex = [getSupport(hull1, hull2, [1, 0])], // create the initial simplex direction = minus(simplex[0]); // set the direction to point towards the origin var iterations = 1e4; // infinite loop protection, 10 000 iterations is more than enough while (true) { if (iterations-- == 0) { console.error('Error: infinite loop while processing mergePaths plugin.'); return true; // true is the safe value that means “do nothing with paths” } // add a new point simplex.push(getSupport(hull1, hull2, direction)); // see if the new point was on the correct side of the origin if (dot(direction, simplex[simplex.length - 1]) <= 0) return false; // process the simplex if (processSimplex(simplex, direction)) return true; } }); }); function getSupport(a, b, direction) { return sub(supportPoint(a, direction), supportPoint(b, minus(direction))); } // Computes farthest polygon point in particular direction. // Thanks to knowledge of min/max x and y coordinates we can choose a quadrant to search in. // Since we're working on convex hull, the dot product is increasing until we find the farthest point. function supportPoint(polygon, direction) { var index = direction[1] >= 0 ? direction[0] < 0 ? polygon.maxY : polygon.maxX : direction[0] < 0 ? polygon.minX : polygon.minY, max = -Infinity, value; while ((value = dot(polygon[index], direction)) > max) { max = value; index = ++index % polygon.length; } return polygon[(index || polygon.length) - 1]; } }; function processSimplex(simplex, direction) { /* jshint -W004 */ // we only need to handle to 1-simplex and 2-simplex if (simplex.length == 2) { // 1-simplex var a = simplex[1], b = simplex[0], AO = minus(simplex[1]), AB = sub(b, a); // AO is in the same direction as AB if (dot(AO, AB) > 0) { // get the vector perpendicular to AB facing O set(direction, orth(AB, a)); } else { set(direction, AO); // only A remains in the simplex simplex.shift(); } } else { // 2-simplex var a = simplex[2], // [a, b, c] = simplex b = simplex[1], c = simplex[0], AB = sub(b, a), AC = sub(c, a), AO = minus(a), ACB = orth(AB, AC), // the vector perpendicular to AB facing away from C ABC = orth(AC, AB); // the vector perpendicular to AC facing away from B if (dot(ACB, AO) > 0) { if (dot(AB, AO) > 0) { // region 4 set(direction, ACB); simplex.shift(); // simplex = [b, a] } else { // region 5 set(direction, AO); simplex.splice(0, 2); // simplex = [a] } } else if (dot(ABC, AO) > 0) { if (dot(AC, AO) > 0) { // region 6 set(direction, ABC); simplex.splice(1, 1); // simplex = [c, a] } else { // region 5 (again) set(direction, AO); simplex.splice(0, 2); // simplex = [a] } } else // region 7 return true; } return false; } function minus(v) { return [-v[0], -v[1]]; } function sub(v1, v2) { return [v1[0] - v2[0], v1[1] - v2[1]]; } function dot(v1, v2) { return v1[0] * v2[0] + v1[1] * v2[1]; } function orth(v, from) { var o = [-v[1], v[0]]; return dot(o, minus(from)) < 0 ? minus(o) : o; } function gatherPoints(points, item, index, path) { var subPath = points.length && points[points.length - 1], prev = index && path[index - 1], basePoint = subPath.length && subPath[subPath.length - 1], data = item.data, ctrlPoint = basePoint; switch (item.instruction) { case 'M': points.push(subPath = []); break; case 'H': addPoint(subPath, [data[0], basePoint[1]]); break; case 'V': addPoint(subPath, [basePoint[0], data[0]]); break; case 'Q': addPoint(subPath, data.slice(0, 2)); prevCtrlPoint = [data[2] - data[0], data[3] - data[1]]; // Save control point for shorthand break; case 'T': if (prev.instruction == 'Q' && prev.instruction == 'T') { ctrlPoint = [basePoint[0] + prevCtrlPoint[0], basePoint[1] + prevCtrlPoint[1]]; addPoint(subPath, ctrlPoint); prevCtrlPoint = [data[0] - ctrlPoint[0], data[1] - ctrlPoint[1]]; } break; case 'C': // Approximate quibic Bezier curve with middle points between control points addPoint(subPath, [.5 * (basePoint[0] + data[0]), .5 * (basePoint[1] + data[1])]); addPoint(subPath, [.5 * (data[0] + data[2]), .5 * (data[1] + data[3])]); addPoint(subPath, [.5 * (data[2] + data[4]), .5 * (data[3] + data[5])]); prevCtrlPoint = [data[4] - data[2], data[5] - data[3]]; // Save control point for shorthand break; case 'S': if (prev.instruction == 'C' && prev.instruction == 'S') { addPoint(subPath, [basePoint[0] + .5 * prevCtrlPoint[0], basePoint[1] + .5 * prevCtrlPoint[1]]); ctrlPoint = [basePoint[0] + prevCtrlPoint[0], basePoint[1] + prevCtrlPoint[1]]; } addPoint(subPath, [.5 * (ctrlPoint[0] + data[0]), .5 * (ctrlPoint[1]+ data[1])]); addPoint(subPath, [.5 * (data[0] + data[2]), .5 * (data[1] + data[3])]); prevCtrlPoint = [data[2] - data[0], data[3] - data[1]]; break; case 'A': // Convert the arc to bezier curves and use the same approximation var curves = a2c.apply(0, basePoint.concat(data)); for (var cData; (cData = curves.splice(0,6).map(toAbsolute)).length;) { addPoint(subPath, [.5 * (basePoint[0] + cData[0]), .5 * (basePoint[1] + cData[1])]); addPoint(subPath, [.5 * (cData[0] + cData[2]), .5 * (cData[1] + cData[3])]); addPoint(subPath, [.5 * (cData[2] + cData[4]), .5 * (cData[3] + cData[5])]); if (curves.length) addPoint(subPath, basePoint = cData.slice(-2)); } break; } // Save final command coordinates if (data && data.length >= 2) addPoint(subPath, data.slice(-2)); return points; function toAbsolute(n, i) { return n + basePoint[i % 2] } // Writes data about the extreme points on each axle function addPoint(path, point) { if (!path.length || point[1] > path[path.maxY][1]) { path.maxY = path.length; points.maxY = points.length ? Math.max(point[1], points.maxY) : point[1]; } if (!path.length || point[0] > path[path.maxX][0]) { path.maxX = path.length; points.maxX = points.length ? Math.max(point[0], points.maxX) : point[0]; } if (!path.length || point[1] < path[path.minY][1]) { path.minY = path.length; points.minY = points.length ? Math.min(point[1], points.minY) : point[1]; } if (!path.length || point[0] < path[path.minX][0]) { path.minX = path.length; points.minX = points.length ? Math.min(point[0], points.minX) : point[0]; } path.push(point); } } /** * Forms a convex hull from set of points of every subpath using monotone chain convex hull algorithm. * http://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain * * @param points An array of [X, Y] coordinates */ function convexHull(points) { /* jshint -W004 */ points.sort(function(a, b) { return a[0] == b[0] ? a[1] - b[1] : a[0] - b[0]; }); var lower = [], minY = 0, bottom = 0; for (var i = 0; i < points.length; i++) { while (lower.length >= 2 && cross(lower[lower.length - 2], lower[lower.length - 1], points[i]) <= 0) { lower.pop(); } if (points[i][1] < points[minY][1]) { minY = i; bottom = lower.length; } lower.push(points[i]); } var upper = [], maxY = points.length - 1, top = 0; for (var i = points.length; i--;) { while (upper.length >= 2 && cross(upper[upper.length - 2], upper[upper.length - 1], points[i]) <= 0) { upper.pop(); } if (points[i][1] > points[maxY][1]) { maxY = i; top = upper.length; } upper.push(points[i]); } // last points are equal to starting points of the other part upper.pop(); lower.pop(); var hull = lower.concat(upper); hull.minX = 0; // by sorting hull.maxX = lower.length; hull.minY = bottom; hull.maxY = (lower.length + top) % hull.length; return hull; } function cross(o, a, b) { return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0]); } /* Based on code from Snap.svg (Apache 2 license). http://snapsvg.io/ * Thanks to Dmitry Baranovskiy for his great work! */ // jshint ignore: start function a2c(x1, y1, rx, ry, angle, large_arc_flag, sweep_flag, x2, y2, recursive) { // for more information of where this Math came from visit: // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes var _120 = Math.PI * 120 / 180, rad = Math.PI / 180 * (+angle || 0), res = [], rotateX = function(x, y, rad) { return x * Math.cos(rad) - y * Math.sin(rad) }, rotateY = function(x, y, rad) { return x * Math.sin(rad) + y * Math.cos(rad) }; if (!recursive) { x1 = rotateX(x1, y1, -rad); y1 = rotateY(x1, y1, -rad); x2 = rotateX(x2, y2, -rad); y2 = rotateY(x2, y2, -rad); var x = (x1 - x2) / 2, y = (y1 - y2) / 2; var h = (x * x) / (rx * rx) + (y * y) / (ry * ry); if (h > 1) { h = Math.sqrt(h); rx = h * rx; ry = h * ry; } var rx2 = rx * rx, ry2 = ry * ry, k = (large_arc_flag == sweep_flag ? -1 : 1) * Math.sqrt(Math.abs((rx2 * ry2 - rx2 * y * y - ry2 * x * x) / (rx2 * y * y + ry2 * x * x))), cx = k * rx * y / ry + (x1 + x2) / 2, cy = k * -ry * x / rx + (y1 + y2) / 2, f1 = Math.asin(((y1 - cy) / ry).toFixed(9)), f2 = Math.asin(((y2 - cy) / ry).toFixed(9)); f1 = x1 < cx ? Math.PI - f1 : f1; f2 = x2 < cx ? Math.PI - f2 : f2; f1 < 0 && (f1 = Math.PI * 2 + f1); f2 < 0 && (f2 = Math.PI * 2 + f2); if (sweep_flag && f1 > f2) { f1 = f1 - Math.PI * 2; } if (!sweep_flag && f2 > f1) { f2 = f2 - Math.PI * 2; } } else { f1 = recursive[0]; f2 = recursive[1]; cx = recursive[2]; cy = recursive[3]; } var df = f2 - f1; if (Math.abs(df) > _120) { var f2old = f2, x2old = x2, y2old = y2; f2 = f1 + _120 * (sweep_flag && f2 > f1 ? 1 : -1); x2 = cx + rx * Math.cos(f2); y2 = cy + ry * Math.sin(f2); res = a2c(x2, y2, rx, ry, angle, 0, sweep_flag, x2old, y2old, [f2, f2old, cx, cy]); } df = f2 - f1; var c1 = Math.cos(f1), s1 = Math.sin(f1), c2 = Math.cos(f2), s2 = Math.sin(f2), t = Math.tan(df / 4), hx = 4 / 3 * rx * t, hy = 4 / 3 * ry * t, m = [ - hx * s1, hy * c1, x2 + hx * s2 - x1, y2 - hy * c2 - y1, x2 - x1, y2 - y1 ]; if (recursive) { return m.concat(res); } else { res = m.concat(res); var newres = []; for (var i = 0, n = res.length; i < n; i++) { newres[i] = i % 2 ? rotateY(res[i - 1], res[i], rad) : rotateX(res[i], res[i + 1], rad); } return newres; } } // jshint ignore: end